Catalog number: 421 - 79564
Product Category: Business & Industrial > Science & Laboratory
Size: 500 µl x 2
79744
The STAT3 Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene under the control of STAT3-responsive element located upstream of the minimal TATA promoter. After transduction, activation of the STAT3 signaling pathway in the target cells can be monitored by measuring the luciferase activity._x000D_
79745
The STAT5 Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene under the control of STAT5-responsive element located upstream of the minimal TATA promoter. After transduction, activation of the STAT5 signaling pathway in the target cells can be monitored by measuring the luciferase activity.
79833
The Hippo pathway regulates cell proliferation and cell death. It is activated by high cell density and cell stress to stop cell proliferation and induce apoptosis. The mammalian Hippo pathway comprises MST kinases and LATS kinases. When the Hippo pathway is activated, MST kinases phosphorylate LATS kinases, which phosphorylate transcriptional co-activators YAP and TAZ. Unphosphorylated YAP and TAZ remain in nucleus and interact with TEAD/TEF transcriptional factors to turn on cell cycle-promoting gene transcription. However, when phosphorylated, YAP and TAZ are recruited from the nucleus to the cytosol, so that the YAP and TAZ-dependent gene transcription is turned off. Dysfunction of the Hippo pathway is frequently detected in human cancer and its down-regulation correlates with the aggressive properties of cancer cells and poor prognosis. <br /> The TEAD Luciferase Reporter Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types of mammalian cells, including primary and non-dividing cells. The particles contain a firefly luciferase gene driven by the TEAD response elements located upstream of the minimal TATA promoter. After transduction, activation of the Hippo pathway in the target cells can be monitored by measuring the luciferase activity._x000D_
78160-2
The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein and ACE2 may offer protection against the viral infection.<br />A variant called B.1.351 was first identified in the fall of 2020 in the Republic of South Africa. This South African variant, also known as 501Y.V2, has many mutations that may lead to higher transmissibility and infectivity. The Spike (B.1.351 Variant) (SARS-CoV-2) Pseudotyped Lentivirus were produced with SARS-CoV-2 B.1.351 Variant Spike (Genbank Accession #QHD43416.1 with B.1.351 mutations; see below for details) as the envelope glycoproteins instead of the commonly used VSV-G. These pseudovirions contain the enhanced green fluorescent protein (eGFP) gene driven by a CMV promoter, therefore, the spike-mediated cell entry can be determined via eGFP fluorescence. The Spike (B.1.351 Variant) (SARS-CoV-2) Pseudotyped Lentivirus can be used to measure the activity of neutralizing antibody against SARS-CoV-2 (B.1.351) variant in a Biosafety Level 2 facility.
78697-1
The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of October 2022, several new BA.5 sub-lineages (e.g. BQ.1, BQ.1.1, BF.7) have been designated._x000D_The spike protein of BQ.1 omicron variant has additional mutations (K444T and N460K) based on the BA.5 variant. The Spike (BQ.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BQ.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BQ.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BQ.1 variant in a Biosafety Level 2 facility._x000D_<p style="text-align: center;"><img src="{{media url="wysiwyg/coronavirus/78697_schematic.jpg"}}" alt="" width="400" height="298" />_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion._x000D_As shown in Figures 2 and 3 in Validation Data, the Spike Omicron BQ.1 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in BQ.1 Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, K444T, L452R, N460K, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K
78697-2
The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection. Omicron Variant was identified in South Africa in November of 2021. This variant has a large number of mutations that allow the virus to spread more easily and quickly than other variants. As of May 2022, Omicron variants were divided into seven distinct sub-lineages: BA.1, BA.1.1, BA.2, BA.3, BA.2.12.1, BA.4, and BA.5. As of October 2022, several new BA.5 sub-lineages (e.g. BQ.1, BQ.1.1, BF.7) have been designated._x000D_The spike protein of BQ.1 omicron variant has additional mutations (K444T and N460K) based on the BA.5 variant. The Spike (BQ.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentiviruses were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron BQ.1 mutations; see below for details) as the envelope glycoprotein instead of the commonly used VSV-G. These pseudovirions contain the firefly luciferase gene driven by a CMV promoter (Figure 1), therefore, the spike-mediated cell entry can be measured via luciferase activity. The Spike (BQ.1, Omicron Variant) (SARS-CoV-2) pseudovirus can be used to measure the activity of a neutralizing antibody against SARS-CoV-2 Omicron BQ.1 variant in a Biosafety Level 2 facility._x000D_<p style="text-align: center;"><img src="{{media url="wysiwyg/coronavirus/78697_schematic.jpg"}}" alt="" width="400" height="298" />_x000D_Figure 1. Schematic of the Luciferase Reporter in SARS-CoV-2 Spike Pseudovirion._x000D_As shown in Figures 2 and 3 in Validation Data, the Spike Omicron BQ.1 pseudovirus has been validated for use with ACE2-HEK293 target cells (which overexpress ACE2; BPS Bioscience #79951)._x000D_Spike Mutations in BQ.1 Omicron Variant:_x000D_Del69-70, T19I, LPPA24-27S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, K444T, L452R, N460K, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K