Catalog number: 223 - 40-746
Product Category: Business & Industrial > Science & Laboratory
Size: 2 ug
40-769
M-CSF is a potent hematopoietic factor produced by a variety of cells, including lymphocytes, monocytes, fibroblasts, endothelial cells, myoblasts and osteoblasts. It is a key regulator of cellular proliferation, differentiation, and survival for blood monocytes, tissue macrophages, and their respective progenitor cells. M-CSF has been shown to play important roles in modulating dermal thickness and fertility. M-CSF is clinically used in the treatment of infection, malignancies and atherosclerosis. It facilitates hematopoietic recovery after bone marrow transplantation. Human M-CSF is reactive in murine systems, but the murine molecule exhibits no activity on human cells. Recombinant Rat M-CSF is a 36.2 kDa homodimeric protein consisting of two 155 amino acid polypeptide subunits.
100-029-AF
G-CSF is a hematopoietic growth factor that stimulates the development of committed progenitor cells to neutrophils and enhances the functional activities of the mature end-cell. It is produced in response to specific stimulation by a variety of cells, including macrophages, fibroblasts, endothelial cells and bone marrow stroma. G-CSF is being used clinically to facilitate hematopoietic recovery after bone marrow transplantation. Human and murine G-CSF are cross-species reactive. Recombinant Human G-CSF is an 18.7 kDa protein consisting of 174 amino acid residues.
100-029S-AF
G-CSF is a hematopoietic growth factor that stimulates the development of committed progenitor cells to neutrophils and enhances the functional activities of the mature end-cell. It is produced in response to specific stimulation by a variety of cells, including macrophages, fibroblasts, endothelial cells and bone marrow stroma. G-CSF is being used clinically to facilitate hematopoietic recovery after bone marrow transplantation. Human and murine G-CSF are cross-species reactive. Recombinant Human G-CSF is an 18.7 kDa protein consisting of 174 amino acid residues.
100-009-AF
EGF is a potent growth factor that stimulates the proliferation of various epidermal and epithelial cells. Additionally, EGF has been shown to inhibit gastric secretion, and to be involved in wound healing. EGF signals through a receptor known as c-erbB, which is a class I tyrosine kinase receptor. This receptor also binds with TGF-α and VGF (vaccinia virus growth factor). Recombinant Human EGF is a 6.2 kDa globular protein containing 53 amino acid residues, including 3 intramolecular disulfide bonds.
100-030-AF
GDNF is a disulfide-linked, homodimeric neurotrophic factor structurally related to Artemin, Neurturin and Persephin. These proteins belong to the cysteine-knot superfamily of growth factors that assume stable dimeric protein structures. GDNF signals through a multicomponent receptor system, composed of a RET and one of the four GFRα (α1-α4) receptors. GDNF specifically promotes dopamine uptake and survival, and morphological differentiation of midbrain neurons. Using a Parkinson’s disease mouse model, GDNF has been shown to improve conditions such as bradykinesia, rigidity, and postural instability. The functional human GDNF ligand is a disulfide-linked homodimer consisting of two 15 kDa polypeptide chains called monomers. Each monomer contains seven conserved cysteine residues, including Cys-101, which is used for inter-chain disulfide bridging, and others that are involved in the intramolecular ring formation known as the cysteine-knot configuration. The calculated molecular weight of Recombinant Human GDNF is 30.4 kDa.
100-030S-AF
GDNF is a disulfide-linked, homodimeric neurotrophic factor structurally related to Artemin, Neurturin and Persephin. These proteins belong to the cysteine-knot superfamily of growth factors that assume stable dimeric protein structures. GDNF signals through a multicomponent receptor system, composed of a RET and one of the four GFRα (α1-α4) receptors. GDNF specifically promotes dopamine uptake and survival, and morphological differentiation of midbrain neurons. Using a Parkinson’s disease mouse model, GDNF has been shown to improve conditions such as bradykinesia, rigidity, and postural instability. The functional human GDNF ligand is a disulfide-linked homodimer consisting of two 15 kDa polypeptide chains called monomers. Each monomer contains seven conserved cysteine residues, including Cys-101, which is used for inter-chain disulfide bridging, and others that are involved in the intramolecular ring formation known as the cysteine-knot configuration. The calculated molecular weight of Recombinant Human GDNF is 30.4 kDa.